Novel phosphorus-doped PbO2–MnO2 bicontinuous electrodes for oxygen evolution reaction†
Abstract
We report a facile electrochemical approach for the fabrication of phosphorus-doped (P-doped) PbO2–MnO2 composite electrodes with a microporous bicontinuous structure. Modification of such structures was achieved by controlling the MnO2 incorporation during an anodic co-deposition process. The results indicate the anodic co-oxidation of Pb2+ and Mn2+ yielded a P–(PbO2–MnO2) deposit with a flat, compact and smooth surface. Meanwhile, the anodic composite deposition of Pb2+ and MnO2 particles resulted in the bicontinuous (P–PbO2)–MnO2 composite with a well-defined microporous morphology. Tafel and EIS were used to characterize their electrocatalytic performances for the oxygen evolution reaction in a typical anodic water-splitting process. The results indicate that such a novel bicontinuous (P–PbO2)–MnO2 composite anode exhibits significantly improved electrocatalytic activity as compared to the P–PbO2 and P–(PbO2–MnO2) anodes. The oxygen evolution kinetics and possible reaction mechanism are further described.