In2O3 cubes: synthesis, characterization and photocatalytic properties†
Abstract
3D cubic microporous In2O3 has been successfully obtained by calcining the as-synthesized cube In(OH)3–InOOH precursor at 300 °C for 2 hours. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to clarify the structures and morphologies of both the cubic In(OH)3–InOOH precursor and cubic In2O3. The formation mechanisms of the In(OH)3–InOOH precursor and cubic In2O3 were investigated. As an important semiconductor photocatalytic material, its photocatalytic properties have been tested. Under the irradiation of UV light, the cubic microporous In2O3 exhibits excellent photocatalytic properties to degrade eosin B (EB), which presents ∼95% degradation of EB after 3 hours and the degradation rates is 10.5 times that of commercial In2O3 powder. The high separation efficiency of electron–hole pairs results in high photocatalytic activity. Furthermore, the photoluminescent properties of the cubic microporous In2O3 have been investigated as well.