Issue 70, 2014

Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts

Abstract

A facile and efficient way of generating oxygen vacancies in visible light activated one-dimensional iodine doped TiO2 photocatalysts was first reported in this work. A two-step hydrothermal synthesis was used to synthesize TiO2 nanomaterials modified by iodic acid (HIO3) as a dopant. Detailed analysis was conducted to illustrate the intrinsic doping/reaction mechanisms of iodic acid in the modification of the TiO2 matrix. The phase and structure evolution were deduced from X-ray diffraction (XRD), Raman, and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was conducted to analyze the generation of oxygen vacancies and the formation of I–O–Ti bonds in the TiO2 lattice. Multi-valences of iodine, due to the reduction of iodic acid, facilitated the generation of oxygen vacancies and 3d state Ti3+ species in the TiO2 lattice. The visible light absorption and enhanced photocatalytic activity of the TiO2 nanomaterials were attributed to existing oxygen vacancies, iodine multi-valences in I–O–Ti bonds, and 3d state Ti3+ sites in the TiO2 lattice. The photocatalytic degradation efficiency under visible light (λ > 400 nm) followed a pseudo first-order kinetic model. Rutile nanowires using a two-step synthesis method produced the highest methylene blue (10 mg L−1) degradation rate constant, Kap, of 7.92 × 10−3 min−1 compared to other synthesized nanomaterials. The Kap value obtained was an order of magnitude greater than commercial P25 (3.87 × 10−4 min−1) and pristine TiO2 nanowires (4.18 × 10−4 min−1). The iodine doped TiO2 photocatalysts can be used in TiO2/light irradiation advanced oxidation processes (AOPs) in water treatment using sunlight or a visible light source, rather than an ultraviolet irradiation source.

Graphical abstract: Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts

Supplementary files

Article information

Article type
Paper
Submitted
20 May 2014
Accepted
06 Aug 2014
First published
06 Aug 2014

RSC Adv., 2014,4, 36959-36966

Author version available

Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts

W. Li, R. Liang, A. Hu, Z. Huang and Y. N. Zhou, RSC Adv., 2014, 4, 36959 DOI: 10.1039/C4RA04768K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements