Issue 73, 2014

On the large capacitance of nitrogen doped graphene derived by a facile route

Abstract

Recent research activities on graphene have identified doping of foreign atoms into the honeycomb lattice as a facile route to tailor its bandgap. Moreover, the presence of foreign atoms can act as defective centres in the basal plane, and these centres can enhance the electrochemical activities of the surface of graphene. Here, we report a facile synthetic approach towards the bulk synthesis of nitrogen doped graphene (N-Graphene) from graphene oxide using a hydrothermal process, with significant control over the extent of N-doping. The electrochemical activeness of N-Graphene (with 4.5 atomic% of nitrogen) is studied by conducting supercapacitor measurements. N-Graphene exhibits a remarkably high specific capacitance of 459 Fg−1 at a current density of 1 mA cm−2 in an electrolyte of 1 M H2SO4 with a high cycle stability compared to that of pristine graphene, which has a specific capacitance of 190 Fg−1. The structural destabilisation of graphene in higher pH/high amount alkaline treatment is demonstrated, and hence optimization of the amount of reagents is necessary in developing a graphene based high performance electronic or electrochemical devices.

Graphical abstract: On the large capacitance of nitrogen doped graphene derived by a facile route

Article information

Article type
Paper
Submitted
25 May 2014
Accepted
31 Jul 2014
First published
04 Aug 2014

RSC Adv., 2014,4, 38689-38697

Author version available

On the large capacitance of nitrogen doped graphene derived by a facile route

M. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan and D. K. Pattanayak, RSC Adv., 2014, 4, 38689 DOI: 10.1039/C4RA04927F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements