Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers†
Abstract
Thermally malleable polymers which undergo covalent bond exchange reactions (BERs) have been shown to be able to rearrange their network topology at high temperatures without impairing the network integrity. At low temperatures, the BERs are so sluggish that the materials behave like traditional thermosetting polymers. In this paper, we demonstrated that the temperature dependent BER rate could be tuned by adjusting the stoichiometry of monomers. As the ratio of hard segments in the epoxy thermoset network is increased, the material's glass transition temperature (Tg) is increased, with a corresponding increase in the temperature required to achieve a given stress relaxation rate. The material stress relaxation behavior was studied from both a theoretical and experimental point of view. Based on the kinetics of BERs, we derived the detailed expression of stress relaxation time, which reveals an Arrhenius type dependency of material relaxation behavior on the applied temperature. Subsequently, from the experimental stress relaxation curves, we determined the energy barrier for the BERs in different networks. With the Tg being elevated from 30.3 °C to 63.0 °C, the BER energy barrier is linearly increased from 68.2 kJ mol−1 to 97.3 kJ mol−1. Such a correlation between these two thermomechanical behaviors provides an additional design parameter (beyond catalyst choice) which can aid in achieving highly tunable service conditions for practical engineering applications of thermally malleable thermosets.