Issue 81, 2014

Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor

Abstract

A solvothermal strategy and a mutual oxidation–reduction approach are used to fabricate ruthenium oxide (RuO2)-based nanocomposites, including RuO2 and RuO2–gold (Au) nanoparticles supported on commercial carbon supports (RuO2/C and RuO2–Au/C nanocomposites). The novelty of this work lies in the synthetic approaches, which are based on a thermal decomposition of metal complexes formed by RuCl3 and dodecylamine at room temperature (for RuO2/C) and the mutual oxidation–reduction phenomenon between RuCl3 and HAuCl4 at elevated temperature (for RuO2–Au/C) in the presence of carbon supports. In particular, the as-prepared RuO2/C and RuO2–Au/C nanocomposites for supercapacitors adopting the H2SO4 electrolyte exhibit high specific capacitances of 537.7 F g−1 and 558.2 F g−1, respectively, at a current density of 50 mA g−1. The specific capacitance reaches 350.1 F g−1 for the RuO2/C nanocomposites and 478.5 F g−1 for RuO2–Au/C nanocomposites at a current density of 200 mA g−1 with good cycling stability. The comparison of the electrochemical measurements of RuO2/C and RuO2–Au/C nanocomposites demonstrates that the presence of Au in the nanocomposites is favorable for the enhancement in capacitive behavior of RuO2.

Graphical abstract: Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2014
Accepted
03 Sep 2014
First published
04 Sep 2014

RSC Adv., 2014,4, 42839-42845

Author version available

Ruthenium oxide-based nanocomposites with high specific surface area and improved capacitance as a supercapacitor

P. Wang, H. Liu, Q. Tan and J. Yang, RSC Adv., 2014, 4, 42839 DOI: 10.1039/C4RA07044E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements