Impact of dithienyl or thienothiophene units on the optoelectronic and photovoltaic properties of benzo[1,2,5]thiadiazole based donor–acceptor copolymers for organic solar cell devices†
Abstract
We report a comparative study on four donor–acceptor benzothiadiazole-based copolymers containing dithienyl or thienothiophene moieties for application in organic photovoltaic (OPV) devices. Bulk-heterojunction OPV devices are fabricated having power conversion efficiencies ranging between 4 and 6%. Morphological, spectroscopic and charge-transport measurements are used to investigate the influence of either the dithienyl or thienothiophene moieties on the structure and photophysical properties of the copolymer and copolymer:PC71BM blend films and rationalise the solar cell characteristics. Although all copolymer:PC71BM blends exhibit comparable hole polaron yields, solar cell devices with the highest power conversion efficiencies are correlated with increased charge-carrier mobility of the copolymer and enhanced aggregation of PC71BM in the blend.