Issue 67, 2014

Anionic waterborne polyurethane dispersion from a bio-based ionic segment

Abstract

Anionic waterborne polyurethane dispersions were prepared from ring-opening epoxidized linseed oil with glycol and hydrochloric acid followed by saponification, step-growth polymerization, and ionomerization. When the intermediate bio-based polyhydroxy fatty acid has an OH functionality of 4.8, the fatty acid can crosslink, and its carboxylic groups are able to provide surface charge for the stabilization of the resulting polymer in the water phase. Two novel anionic waterborne polyurethane dispersions, one with and one without additional castor oil, were successfully prepared and compared to a conventional control sample. Films from the polyurethane dispersions were obtained by casting the dispersions into molds and subsequently characterized by differential scanning calorimetry, dynamic mechanical analysis, ethanol absorption and uptake, thermogravimetric analysis, and tensile stress–strain tests. The castor oil containing polymer displayed a decrease in glass transition temperature, tensile strength, and Young's modulus, but an increase in elongation compared to the control sample. The sample without the castor oil behaved like a brittle, glassy material with higher Young's modulus and lower ductility because of its relatively high crosslinking density. This work proves the viability of incorporating vegetable-oil based polyhydroxy fatty acids as ionic segments into anionic waterborne polyurethane dispersions.

Graphical abstract: Anionic waterborne polyurethane dispersion from a bio-based ionic segment

Article information

Article type
Paper
Submitted
18 Feb 2014
Accepted
01 Aug 2014
First published
04 Aug 2014

RSC Adv., 2014,4, 35476-35483

Author version available

Anionic waterborne polyurethane dispersion from a bio-based ionic segment

R. Chen, C. Zhang and M. R. Kessler, RSC Adv., 2014, 4, 35476 DOI: 10.1039/C4RA07519F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements