Self-assembly of a biodegradable branched PE-PCL-b-PEC amphiphilic polymer: synthesis, characterization and targeted delivery of doxorubicin to cancer cells†
Abstract
A novel biodegradable branched block copolymer was synthesized by the ring-opening polymerization of ethylene carbonate using pre-synthesized four-armed pentaerythretol poly(ε-caprolactone) (PE-PCL) as a macro initiator. Folic acid was conjugated with the end-group of the block copolymer and self-assembled in water to form polymer micelles (PMs). The very low critical micelle concentration of the block copolymer suggests its potential application in advanced drug delivery systems. The PMs are spherical in shape and have an average size of 80 nm, which is suitable for the delivery of drugs. The hydrophobicity of pentaerythretol poly(ε-caprolactone) and its branched structure can accommodate high amounts of doxorubicin. Compared with a blank sample, PMs containing encapsulated doxorubicin show a much higher cytotoxicity towards HeLa cells. A high rate of release of doxorubicin in vitro at pH 5.0 shows that the system is responsive to pH. Confocal laser scanning microscopy showed that the doxorubicin-loaded PMs were internalized into the HeLa cells.