Issue 5, 2014

Functionalised staple linkages for modulating the cellular activity of stapled peptides

Abstract

Stapled peptides are a promising class of alpha-helix mimetic inhibitors for protein–protein interactions. We report the divergent synthesis of “functionalised” stapled peptides via an efficient two-component strategy. Starting from a single unprotected diazido peptide, dialkynyl staple linkers bearing different unprotected functional motifs are introduced to create different alpha-helical peptides in one step, functionalised on the staple linkage itself. Applying this concept to the p53/MDM2 interaction, we improve the cell permeability and p53 activating capability of an otherwise impermeable p53 stapled peptide by introducing cationic groups on the staple linkage, rather than modifying the peptide sequence.

Graphical abstract: Functionalised staple linkages for modulating the cellular activity of stapled peptides

Supplementary files

Article information

Article type
Edge Article
Submitted
06 Jan 2014
Accepted
01 Mar 2014
First published
10 Mar 2014

Chem. Sci., 2014,5, 1804-1809

Author version available

Functionalised staple linkages for modulating the cellular activity of stapled peptides

Y. H. Lau, P. de Andrade, S. Quah, M. Rossmann, L. Laraia, N. Sköld, T. J. Sum, P. J. E. Rowling, T. L. Joseph, C. Verma, M. Hyvönen, L. S. Itzhaki, A. R. Venkitaraman, C. J. Brown, D. P. Lane and D. R. Spring, Chem. Sci., 2014, 5, 1804 DOI: 10.1039/C4SC00045E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements