Issue 24, 2014

Twisting and bending stress in DNA minicircles

Abstract

The interplay between bending of the molecule axis and appearance of disruptions in circular DNA molecules, with ∼100 base pairs, is addressed. Three minicircles with different radii and almost equal contents of AT and GC pairs are investigated. The DNA sequences are modeled by a mesoscopic Hamiltonian which describes the essential interactions in the helix at the level of the base pair and incorporates twisting and bending degrees of freedom. Helix unwinding and bubble formation patterns are consistently computed by a path integral method that sums over a large number of molecule configurations compatible with the model potential. The path ensembles are determined, as a function of temperature, by minimizing the free energy of the system. Fluctuational openings appear along the helix to release the stress due to the bending of the molecule backbone. In agreement with the experimental findings, base pair disruptions are found with larger probability in the smallest minicircle of 66 bps whose bending angle is ∼6°. For this minicircle, a sizeable untwisting is obtained with the helical repeat showing a step-like increase at T = 315 K. The method can be generalized to determine the bubble probability profiles of open ends linear sequences.

Graphical abstract: Twisting and bending stress in DNA minicircles

Article information

Article type
Paper
Submitted
24 Nov 2013
Accepted
24 Mar 2014
First published
25 Mar 2014

Soft Matter, 2014,10, 4304-4311

Twisting and bending stress in DNA minicircles

M. Zoli, Soft Matter, 2014, 10, 4304 DOI: 10.1039/C3SM52953C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements