Efficient solvent-free dissipative particle dynamics for lipid bilayers
Abstract
We rigorously derived effective potentials for solvent-free DPD simulation of lipid bilayers. The derivation relies on an earlier developed hybrid particle/field method and is based on the idea that the solvent is always in local equilibrium on a coarse-grained time scale, given the instantaneous templates set by the self-assembly structure. By relating the parameters in the effective implicit-solvent potentials directly to the lipid–solvent interactions and membrane properties for the explicit solvent DPD model, we constitute an efficient and general procedure for reformulating any DPD membrane model in an implicit-solvent form. Here, we determined these membrane properties for two existing DPD models, via an analysis of membrane fluctuation spectra. Equivalent single-processor implicit- and explicit-solvent calculations show the trade-mark of implicit solvent simulation: a 20-fold reduction of the total simulation time for a system containing 92% solvent. This increased efficiency enabled us to realistically simulate the spontaneous formation of a ∼20 nm diameter vesicle on a single processor overnight. We believe that this work will contribute to an enhanced computational study of large vesicles and thus a better understanding of experimental liposome dynamics.