Issue 29, 2014

Comparison between generations of foams and single vertical films – single and mixed surfactant systems

Abstract

The purpose of this article is to compare experiments carried out with single vertical foam films and with foams. We focus on the generation of films and foams and measure (i) the quantity of water entrained and (ii) the stability of the systems. The surfactants we used are C12E6, β-C12G2 and their 1 : 1 mixture because those systems are very well characterised in the literature and are known to stabilise foams with very different properties. We show that the quantity of water uptake in foams and single vertical films scales in the same way with the velocity of generation. However, the different surfactant solutions have different foamabilities, whereas the films they stabilise have exactly the same thickness. Moreover, the foamability of a C12E6 solution is much lower than that of a β-C12G2 solution or of a solution of the 1 : 1 mixture. This is due to the rapid rupture of the C12E6 foam films during foam generation. Surprisingly, the isolated films have exactly the same lifetime for all the surfactant solutions. We conclude that, though drawing a correlation between films and foams is tempting, the results obtained do not allow correlating of film and foam stability during the generation process. The only difference we observed between the single films stabilised by the different solutions is the stability of their respective black films. We thus suggest that the stability of black films during foam generation plays an important role which should be explored further in future work.

Graphical abstract: Comparison between generations of foams and single vertical films – single and mixed surfactant systems

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2014
Accepted
01 Apr 2014
First published
03 Apr 2014

Soft Matter, 2014,10, 5280-5288

Comparison between generations of foams and single vertical films – single and mixed surfactant systems

L. Saulnier, J. Boos, C. Stubenrauch and E. Rio, Soft Matter, 2014, 10, 5280 DOI: 10.1039/C4SM00326H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements