Issue 32, 2014

Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species

Abstract

Our aim is to investigate the phase segregation and the structure of multi-component bio-inspired phospholipid vesicles via dissipative particle dynamics. The chemical distinction in the phospholipid species arises due to different head and tail group moieties, and molecular stiffness of the hydrocarbon tails. The individual amphiphilic phospholipid molecular species are represented by a hydrophilic head group and two hydrophobic tails. The distinct chemical nature of the moieties is modeled effectively via soft repulsive interaction parameters, and the molecular rigidity is tuned via suitable three-body potential constants. We demonstrate the formation of a stable hybrid vesicle through the self-assembly of the amphiphilic phospholipid molecules in the presence of a hydrophilic solvent. We investigate and characterize the phase segregation and the structure of the binary vesicles for different phospholipid mixtures. Our results demonstrate macroscopic phase separation for phospholipid mixtures composed of species with different hydrocarbon tail groups. We also investigate the relationship between the phase segregation and thermodynamic variables such as interfacial line tension and surface tension, and obtain correspondence between existing theory and experiments, and our simulation results. We report variations in the molecular chain stiffness to have negligible contributions to the phase segregation in the mixed bilayer, and to demonstrate shape transformations of the hybrid vesicle. Our results can be used to design novel bio-inspired hybrid vehicles for potential applications in biomedicine, sensing, imaging and sustainability.

Graphical abstract: Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2014
Accepted
29 May 2014
First published
30 May 2014

Soft Matter, 2014,10, 6096-6108

Author version available

Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species

F. Aydin, P. Ludford and M. Dutt, Soft Matter, 2014, 10, 6096 DOI: 10.1039/C4SM00998C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements