MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties†
Abstract
Microwave shielding properties of chemically synthesized MnO2 decorated graphene nanoribbons (GNRs) are reported for the first time. The nature of MnO2 decoration on the GNRs has been investigated using scanning electron microscopy, X-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy. The electromagnetic interference (EMI) shielding effectiveness of this material was investigated in the microwave region (Ku-band, 12.4–18 GHz). The presence of MnO2 on GNR enhances the interfacial polarization, multiple scattering, natural resonances and the effective anisotropy energy, which leads to absorption dominated high shielding effectiveness of −57 dB (blocking >99.9999% radiation) by a 3 mm thick sample. Dielectric attributes (ε′ and ε′′) were evaluated to understand the mechanism of the excellent shielding effectiveness. The material will be an excellent choice for radar absorbing applications.