Issue 24, 2014

Organic radical functionalized graphene as a superior anode material for lithium-ion batteries

Abstract

We report organic radical functionalized graphene via a simple etherification of carboxylic groups on graphene oxide with the hydroxyl group on 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-hydroxy-TEMPO). The resultant 4-hydroxy-TEMPO functionalized graphene (TEMPO-G) is revealed to consist of an electrically conducting network of graphene sheets with abundant electrochemically active nitroxide radical functionalities. As a consequence, when applied as the anode material for lithium ion batteries (LIBs), TEMPO-G exhibits a high reversible capacity with excellent cycling stability for lithium storage in terms of 1080 mA h g−1 at a current density of 100 mA g−1 after 400 cycles. The superior lithium storage performance of TEMPO-G can be attributed to the synergistic effect of graphene and abundant nitroxide radicals for ultrahigh lithium storage due to the two types of reservoirs (graphene and nitroxide radicals). Meanwhile, the unwanted dissolution of nitroxide radicals in the electrolyte can be avoided due to chemical bonding between the graphene sheets and 4-hydroxy-TEMPO. Moreover, the interconnected graphene sheet network can not only provide a large interfacial area for fast lithium ion diffusion from electrolyte to electrode but also shortens the diffusion length of lithium ions and electrons, as well as accommodating the volume change during the charge–discharge process.

Graphical abstract: Organic radical functionalized graphene as a superior anode material for lithium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
21 Jan 2014
Accepted
20 Mar 2014
First published
21 Mar 2014

J. Mater. Chem. A, 2014,2, 9164-9168

Organic radical functionalized graphene as a superior anode material for lithium-ion batteries

Z. Du, W. Ai, L. Xie and W. Huang, J. Mater. Chem. A, 2014, 2, 9164 DOI: 10.1039/C4TA00345D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements