Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors†
Abstract
Mo-doped ZnO nanowire (NW) networks were prepared by coating the MoS2 layer through successive ionic layer adsorption and reaction and subsequent heat treatment at 600 °C for 2 h. The resulting Mo-doped ZnO NW network sensor demonstrated a high gas response of 14.11 to 5 ppm H2S at 300 °C, which is 7.66–11.47 times higher than those of 5 ppm C2H5OH, NH3, HCHO, CO, H2, o-xylene, benzene, toluene, and trimethylamine. The reversibility of the sensor signal, as well as the response and selectivity to H2S, is significantly improved by Mo doping into the ZnO NW networks, which can open various applications to monitor H2S in an indoor atmosphere, industrial petroleum/gas, and automobile exhaust gas.