Issue 20, 2014

Edge-enriched porous graphene nanoribbons for high energy density supercapacitors

Abstract

A simple solution-based oxidative process and subsequent chemical activation combination method has been developed to prepare edge-enriched porous graphene nanoribbons (GNRs) as a high-performance electrode material for supercapacitors. The precursor aligned carbon nanotubes are cut longitudinally and unzipped by a modified Brodie method to form tube-like GNRs with abundant edges. The intermediate GNRs were subsequently chemically activated using KOH to generate a suitable porosity and create more edge sites. These edge sites contribute a larger capacitance than the basal plane of graphene and the nanopores facilitate the fast immigration of ions. As a result, the edge-enriched GNRs exhibit a capacitance uptake per specific surface area almost two times higher than that of conventional activated graphene sheets, which gives rise to the high energy density of the porous GNR electrode. The highly efficient utilization of the edge planes and easy, low-cost scale-up production will make porous GNRs potentially applicable to high-performance supercapacitors.

Graphical abstract: Edge-enriched porous graphene nanoribbons for high energy density supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2014
Accepted
26 Mar 2014
First published
26 Mar 2014

J. Mater. Chem. A, 2014,2, 7484-7490

Edge-enriched porous graphene nanoribbons for high energy density supercapacitors

C. Zheng, X. F. Zhou, H. L. Cao, G. H. Wang and Z. P. Liu, J. Mater. Chem. A, 2014, 2, 7484 DOI: 10.1039/C4TA00727A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements