Issue 30, 2014

Multifunctional microporous organic polymers

Abstract

Functional microporous organic polymers (MOPs) are attractive in a wide range of applications including gas separation, catalysis, and energy storage. There is a lack of cost-effective processes to produce functional MOPs at industrial scale, which in fact limits their practical applications. Here, we propose a new low-cost strategy, based on the Scholl reaction, which can directly link rigid building blocks to obtain MOPs with high surface area and highly microporous structures. More importantly, this method is suitable for various building blocks and can be used as a general bottom-up approach to produce a variety of multifunctional MOPs. Multifaceted applications of these materials are also demonstrated by their large gas storage capacity, high catalytic activity, luminescence and semiconducting properties.

Graphical abstract: Multifunctional microporous organic polymers

Supplementary files

Article information

Article type
Paper
Submitted
03 Mar 2014
Accepted
13 May 2014
First published
21 May 2014

J. Mater. Chem. A, 2014,2, 11930-11939

Multifunctional microporous organic polymers

B. Li, Z. Guan, X. Yang, W. D. Wang, W. Wang, I. Hussain, K. Song, B. Tan and T. Li, J. Mater. Chem. A, 2014, 2, 11930 DOI: 10.1039/C4TA01081G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements