Directional synthesis of tin oxide@graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries†
Abstract
Directional synthesis of SnO2@graphene nanocomposites via a one-step, low-cost, and up-scalable wet-mechanochemical method is achieved using graphene oxide and SnCl2 as precursors. The graphene oxides are reduced to graphene while the SnCl2 is oxidized to SnO2 nanoparticles that are in situ anchored onto the graphene sheets evenly and densely, resulting in uniform SnO2@graphene nanocomposites. The prepared nanocomposites possess excellent electrochemical performance and outstanding cycling in Li-ion batteries.