Structural, textural and acid–base properties of carbonate-containing hydroxyapatites†
Abstract
Carbonate-containing hydroxyapatites with different Ca/P ratios and optionally containing Na+ cations were successfully synthesized using a precipitation method. The solids were extensively characterized by XRD, LEIS, XPS, IR, TGA and NMR. Further, their acid–base properties were determined by NH3-TPD, PEA-XPS, CO2-TPD and by pulsed liquid chromatography using benzoic acid as a probe. The so-obtained structural, textural and acid–base properties could be finely correlated to give a clear picture of the system. The acidic properties of hydroxyapatites were attributed to Ca2+, surface HPO42− and OH− vacancies and the basic properties were attributed to PO43−, OH− and CaO species. The fine-tuning of the amount, of the nature and the strength of acid–base properties derived by varying the carbonate content in hydroxyapatites can find applications in catalysis, which was illustrated by isopropanol reactivity.