High-index-faceted platinum nanoparticles: insights into structural and thermal stabilities and shape evolution from atomistic simulations
Abstract
High-index-faceted Pt nanoparticles exhibit exceptional electrocatalytic activity owing to the high density of low coordinated sites on their surface, and thus have attracted extensive studies over the past few years. In this study, we have employed atomistic simulations to systematically investigate the structural and thermal stabilities and shape evolution of Pt nanoparticles with different high-index facets, that is, tetrahexahedra enclosed by {hk0} facets, trapezohedra by {hkk} ones, and trisoctahedra by {hhk} ones. The results show that {221} faceted trisoctahedral nanoparticles display the best structural and thermal stabilities while {410} faceted tetrahexahedral ones display the worst. The shape stability of these nanoparticles generally decreases in the order from trapezohedron to tetrahexahedron to trisoctahedron. For the same type of polyhedron, the structural, thermal and shape stabilities of the nanoparticles all decrease according to the order of {2kl}, {3kl} and {4kl} facets. Further analyses have discovered that a large proportion of high-coordinated surface atoms are beneficial for enhancing both the thermal and shape stabilities. This work provides an in-depth understanding of surface structures and thermodynamic evolution of high-index-faceted metallic nanoparticles.