A series of metal–organic frameworks based on 5-(4-pyridyl)-isophthalic acid: selective sorption and fluorescence sensing†
Abstract
Solvothermal reactions of 5-(4-pyridyl)-isophthalic acid (H2pbdc) and transition-metal centers (Ni2+/Co2+/Zn2+) in the presence (or absence) of N-auxiliary 4,4′-bis(1-imidazolyl)biphenyl (bimb) ligand produce [Ni2(pbdc)2(μ2-H2O)(H2O)2·(DMA)2.7]n (DMA = N,N′-dimethylacetamide, 1), [Ni12(pbdc)12(μ2-H2O)6(py)2(H2O)8(DMA)2·(H2O)5·(DMA)9]n (2), [Co2(pbdc)2(bimb)2·(bimb)0.5·(H2O)4·(DMF)0.25]n (3) and [Zn(pbdc)(bimb)·(H2O)]n (4), which exhibit structural diversity. Both compounds 1 and 2 display a uninodal 8-connected 3D tsi net, but feature different crystal systems and space groups from each other. Compound 3 adopts a 2-fold interpenetrating binodal (3,5)-connected 3D hms net and compound 4 features a rare 2-fold interpenetrating binodal (3,4)-connected 3D fsx architecture. In particular, activated 3 shows high-efficiency for the selective sorption of small molecules, including CO2 over N2 and CH4, H2 over N2, as well as alcohols from water. More importantly, 4 represents the first report on a MOF as a promising luminescent probe for detecting pesticides, and also the very first example for detecting both pesticides and solvent molecules simultaneously.