Issue 32, 2014

The origin of anomalous large reversible capacity for SnO2 conversion reaction

Abstract

Single-nanocrystalline SnO2 (2–4 nm ϕ) particles completely encapsulated within hollow-structured carbon black structures (Ketjen Black (KB), typically 40 nm ϕ) were prepared using our original in situ ultracentrifugation (UC treatment) materials processing technology. Ultracentrifugation at 75 000g induces an in situ sol–gel reaction that brings about optimized linking between limited-size SnO2 nanocrystals and microcrystalline graphitic carbons of KB. Efficient entanglement and nanonesting have been accomplished by simultaneous nanofabrication and nanohybridization in the UC treatment, specifically at a ratio of SnO2/KB = 45/55. This composite exhibited a reversible capacity of 837 mA h g−1 per composite, equivalent to 1444 mA h g−1 (per pure SnO2 after subtracting the capacity attributed to KB in the composite) for remarkably many cycles, over 1200. Such high performance in regard to both capacity and cyclability has never been attained so far for SnO2 anode materials. The reversibility of changes in the Sn valence state (defined as “formal valence state” in the manuscript) from Sn(2.9+) to Sn(4.4−) was demonstrated by in situ XAFS measurements during the lithiation–delithiation process. Peculiar nanodots of typically 2–4 nm that look like single-crystal SnO2/carbon core–shell structures were found for the optimized dose ratio (45/55) in the HRTEM observation. After 10 cycles, all the materials showed complete encapsulation of the same-sized nanoparticles, which were covered and nested within the KB matrix and an electrolyte-derived polymeric film. These results indicate that the initially prepared SnO2/KB composites were transformed into a new species, represented as LixSnO1.45 (x: 0–7.3), which shows perfect reversibility and cyclability. This species can exchange a total of 7.3 electrons, including 2.9 electrons for the conversion reaction (1–2 V) and 4.4 electrons for the subsequent alloying process (0–1 V).

Graphical abstract: The origin of anomalous large reversible capacity for SnO2 conversion reaction

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2014
Accepted
22 May 2014
First published
23 May 2014

J. Mater. Chem. A, 2014,2, 13058-13068

Author version available

The origin of anomalous large reversible capacity for SnO2 conversion reaction

K. Kisu, M. Iijima, E. Iwama, M. Saito, Y. Orikasa, W. Naoi and K. Naoi, J. Mater. Chem. A, 2014, 2, 13058 DOI: 10.1039/C4TA01994F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements