Issue 36, 2014

Multifunctional graphene sheet–nanoribbon hybrid aerogels

Abstract

Graphene sheets and nanoribbons are graphene-based nanostructures with different dimensions. Here, we show that these two materials can be combined to form highly porous, ultra-low density, compressible yet elastic aerogels, which can be used as efficient adsorbents and supercapacitor electrodes. The pore walls consist of stacked graphene sheets embedded with uniformly distributed thick nanoribbons unzipped from multi-walled carbon nanotubes as effective reinforcing skeletons. Owing to the large pore-size, robust and stable structure, and the nanoribbon-adhered pore walls, these hybrid aerogels show very large adsorption capacity for a series of organic solvents and oils (100 to 350 times of aerogel weight), and a specific capacitance of 256 F g−1 tested in a three-electrode electrochemical configuration, which is further improved to 537 F g−1 by depositing controlled loading pseudo-polymers into the aerogels. Our multifunctional graphene sheet–nanoribbon hybrid aerogels may find potential applications in many fields such as environmental cleanup and as flexible electrodes for energy storage systems such as supercapacitors and batteries.

Graphical abstract: Multifunctional graphene sheet–nanoribbon hybrid aerogels

Supplementary files

Article information

Article type
Paper
Submitted
23 May 2014
Accepted
22 Jun 2014
First published
24 Jun 2014

J. Mater. Chem. A, 2014,2, 14994-15000

Author version available

Multifunctional graphene sheet–nanoribbon hybrid aerogels

C. Wang, X. He, Y. Shang, Q. Peng, Y. Qin, E. Shi, Y. Yang, S. Wu, W. Xu, S. Du, A. Cao and Y. Li, J. Mater. Chem. A, 2014, 2, 14994 DOI: 10.1039/C4TA02591A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements