Issue 44, 2014

On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area

Abstract

Low surface area carbon materials, derived from pyrolyzing biomass or polymers, often possess high areal capacitances. However, the well-accepted pseudocapacitance introduced by heteroatoms could not explain this phenomenon without doubt. In order to explore the nature of the energy storage mechanism in these low surface area carbon materials, we prepared a series of laver-based carbon materials by regulating the heteroatom contents and investigated their electrochemical performance. Combining the results of advanced pore structure analyses and electrochemical measurements, we disclose that the presence of ultramicropores, which could not be probed by adsorbates such as nitrogen gas or argon, but are accessible to carbon dioxide or electrolyte ions, plays a most dominant role in the high capacitance of low surface area carbon materials. In this contribution, the previously accepted viewpoint that the capacitance is mainly derived from heteroatoms undergoing Faradaic reactions is challenged.

Graphical abstract: On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area

Supplementary files

Article information

Article type
Paper
Submitted
05 Jul 2014
Accepted
16 Sep 2014
First published
16 Sep 2014

J. Mater. Chem. A, 2014,2, 18998-19004

On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area

X. Wu, W. Xing, J. Florek, J. Zhou, G. Wang, S. Zhuo, Q. Xue, Z. Yan and F. Kleitz, J. Mater. Chem. A, 2014, 2, 18998 DOI: 10.1039/C4TA03430A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements