Issue 22, 2014

In vitro and in vivo study of a sodium chloride impregnated microarc oxidation-treated titanium implant surface

Abstract

Microarc oxidation (MAO) has been well-documented as an advantageous surface coating technique to improve implant osseointegration. Nevertheless, its strong susceptibility to bacteria critically impedes the development of MAO in clinical trials. Aimed at the efficient inhibition of bacterial invasion of MAO treated titanium (MAO-Ti) implants, a composite coating created by applying sodium chloride (NaCl) on a MAO-Ti implant surface layer was designed herein with the capacity to resist a broad spectrum of bacteria. In the present study, 10% NaCl was impregnated onto an optimized MAO-Ti implant to achieve a composite NaCl-MAO-Ti coating. First, Staphylococcus aureus (S. aureus), a frequently detected pathogen associated with peri-implantitis, was employed as an in vitro model. The visualization and quantification of S. aureus adhering to MAO-Ti and NaCl-MAO-Ti surfaces after incubation for 2, 4 and 24 h was described. Secondly, in an animal experiment, MAO-Ti and NaCl-MAO-Ti implants were placed into the tibia of male goats and these implants remained in situ for 9 weeks. The peri-implant soft tissue reactions, epithelial down growth and microorganisms separated from the inflammatory exudates were assessed during the whole process. The results of the in vitro study revealed that the NaCl-MAO-Ti implant surface significantly decreased the adhesion and multiplication of S. aureus compared to the untreated MAO-Ti. Moreover, the animal experiment established that the NaCl-MAO-Ti implants caused less peri-implant soft tissue infection and ultimately reduced the occurrence of peri-implantitis. Taken together, these data suggest that NaCl impregnated MAO-Ti implant products can effectively lower the risk of peri-implantitis and simultaneously preserve the osseointegration capacity of the MAO coating, which may help facilitate the application of NaCl-MAO-Ti implants in clinic trials.

Graphical abstract: In vitro and in vivo study of a sodium chloride impregnated microarc oxidation-treated titanium implant surface

Article information

Article type
Paper
Submitted
11 Jan 2014
Accepted
04 Mar 2014
First published
05 Mar 2014

J. Mater. Chem. B, 2014,2, 3549-3556

In vitro and in vivo study of a sodium chloride impregnated microarc oxidation-treated titanium implant surface

X. Wang, G. Wang, S. Shan, G. Hui, T. Guo, G. Liu and Y. Zhao, J. Mater. Chem. B, 2014, 2, 3549 DOI: 10.1039/C4TB00072B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements