A one-pot solvothermal synthesis of hierarchical microspheres with radially assembled single-crystalline TiO2-nanorods for high performance dye-sensitized solar cells†
Abstract
A simple one-pot method to prepare complex morphology-tunable hierarchical TiO2 microspheres consisting of radially assembled single-crystalline rutile TiO2 nanorods is developed by combining an acid thermal crystallization process and a self-assembly process of the nanorods via a solvothermal amphiphile–water microreactor strategy. Using P25 nanoparticles as void fillers to generate a mesoporous electrode film, the microsphere based photoanode exhibits a maximum power conversion efficiency of 7.95% at an anode film thickness of 27.2 μm, highlighting the importance of material architecture tailoring in improving the electron transport properties of dye-sensitized solar cells.