Issue 25, 2014

Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1−xHgxTe nanocrystals

Abstract

Bright and stable near-infrared (NIR) and infrared (IR) emitting chromophores are in high demand for applications in telecommunication, solar cells, security barcodes, and as fluorescent reporters in bioimaging studies. The best choice for wavelengths >750 nm are semiconductor nanocrystals, especially ternary or alloy nanocrystals like CdHgTe, which enable size and composition control of their optical properties. Here, we report on the influence of growth time and surface chemistry on the composition and optical properties of colloidal CdHgTe. Up to now, these are the only NIR and IR emissive quantum dots, which can be synthesized in high quality in water, using a simple one-pot reaction. For this study we utilized and compared three different thiol ligands, thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), and glutathione (GSH). Aiming at the rational design of bright NIR- and IR-emissive alloy materials, special emphasis was dedicated to a better understanding of the role of the surface ligand and adsorption–desorption equilibria on the photoluminescence quantum yield and stability. In this respect, dilution and protonation studies were performed. Our results show that with this simple synthetic procedure, strongly fluorescent CdHgTe colloids can be obtained with MPA as stabilizing ligand revealing quantum yields as high as 45% independent of particle concentration.

Graphical abstract: Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1−xHgxTe nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2014
Accepted
04 May 2014
First published
08 May 2014

J. Mater. Chem. C, 2014,2, 5011-5018

Author version available

Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1−xHgxTe nanocrystals

S. Leubner, R. Schneider, A. Dubavik, S. Hatami, N. Gaponik, U. Resch-Genger and A. Eychmüller, J. Mater. Chem. C, 2014, 2, 5011 DOI: 10.1039/C4TC00582A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements