Issue 40, 2014

Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices

Abstract

We present the results of a study of flat, uniform, and stripe-patternable organic semiconducting layers produced by a slot-die coating method using a self-metered coating mode with blended solutions for the fabrication of bright, efficient, and large-area organic light emitting devices (OLEDs). It is shown that the self-metered slot-die coating process can produce high quality, homogeneous, and stripe-patterned thin films using the downstream meniscus of a blended solution, which can be controlled by adjusting the coating parameters of the capillary number of the coating solution by varying the gap height and coating speed. It is shown that very bright and efficient OLEDs (peak brightness ∼50 000 cd m−2 with maximum efficiencies of ∼29 cd A−1 and ∼14 lm W−1) were successfully demonstrated by manipulating the slot-die coated hole-injecting and electroluminescent layers that contained the phosphorescent Ir complex. In view of these results, we believe that the fabrication of organic semiconducting layers using the self-metered slot-die coating process is a promising new technique for high-throughput manufacturing such as via the roll-to-roll process.

Graphical abstract: Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices

Article information

Article type
Paper
Submitted
22 Apr 2014
Accepted
22 Aug 2014
First published
26 Aug 2014

J. Mater. Chem. C, 2014,2, 8614-8621

Author version available

Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices

B. Park, O. E. Kwon, S. H. Yun, H. G. Jeon and Y. H. Huh, J. Mater. Chem. C, 2014, 2, 8614 DOI: 10.1039/C4TC00817K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements