A first-principles study of the spin transport properties of a 4H-TAHDI-based multifunctional spintronic device with graphene nanoribbon electrodes
Abstract
By using the nonequilibrium Green's function formalism in combination with the density functional theory, we have investigated the spin transport properties of a 4H-TAHDI-based multifunctional spintronic device constructed by contacting a 4H-TAHDI molecule with two ferromagnetic zigzag-edge graphene nanoribbon electrodes. The results show that perfect giant magnetoresistance, spin-filtering, bipolar spin-rectifying, and negative differential resistance effects can be realized simultaneously. The mechanisms were proposed for these interesting phenomena. Our results demonstrate that this system holds promise in the design of a high-performance multifunctional single-molecule spintronic device.