Efficient energy transfer from ZnO to Nd3+ ions in Nd-doped ZnO films deposited by magnetron reactive sputtering†
Abstract
In this paper, a detailed study of the luminescent properties of Nd3+ ions in sputtered ZnO thin films is reported for the first time. Experimental evidence is provided showing that Nd is inserted and optically active in the ZnO matrix. Despite the small amount (<2%) of rare earth in these thin ZnO films, intense luminescence signals have been collected, indicating efficient infrared emission of Nd3+ in ZnO. Direct excitation of Nd3+ ions in the ZnO matrix was possible, suggesting that most of the Nd atoms are in the 3+ form at all deposition temperatures. Moreover, intense Nd3+ emission has been recorded also when the host was excited, indicating that an efficient energy transfer occurs from ZnO to Nd ions. Both the transfer efficiency and the Nd3+ concentration seem to depend on the deposition temperature. In particular, indirect excitation of the sample deposited at 400 °C generates a richer emission pattern compared to lower temperatures. The careful analysis of the luminescence data indicated that the new pattern comes from Nd sites that cannot be efficiently directly excited, but that are characterized by intense emission under indirect excitation of the host. The possible transfer mechanisms leading to this behavior will be outlined.