Issue 12, 2015

A human telomeric G-quadruplex-based electronic nanoswitch for the detection of anticancer drugs

Abstract

An electronic nanoswitch is described based on the conformational change of the DNA sequence in the presence of stabilizing ligands. The new electrochemical biosensor was prepared by modifying a screen-printed graphite electrode (SPE) with functionalized SiO2 nanoparticles [(SiO2-N-propylpiperazine-N-(2-mercaptopropane-1-one) (SiO2@NPPNSH)] and Au nanoparticles (AuNPs). These nanoparticles are able to immobilize thiolated G-quadruplex DNA structures (SH-G4DNA). The SH groups on the SiO2@NPPNSH nanoparticles provide a good platform for stabilizing AuNPs on the surface of the electrode. This is due to the fact that AuNPs are able to bind to the organic SH groups on the SiO2@NPPNSH. The SH-G4DNA binds to the modified electrode by a AuNPs–S bond. The structure of SiO2@NPPNSH was characterized by scanning electron microscopy (SEM), thermo-gravimetric analysis (TGA) and infrared (IR) spectroscopy. The morphology of the modified electrode was characterized by SEM. The interaction between G4DNA and the anticancer drug, Tamoxifen (Tam), was studied in Tris–HCl buffer and [Fe(CN)6]3− using cyclic (CV) and square wave voltammetry (SWV). The G-quadruplex formation and the interaction mechanism were identified by circular dichroism (CD) measurements. The CV current was seen to decrease with increasing concentration of Tam due to interaction between G4DNA and Tam. This biosensor is a simple and useful tool for selecting G-quadruplex-binding ligands.

Graphical abstract: A human telomeric G-quadruplex-based electronic nanoswitch for the detection of anticancer drugs

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2014
Accepted
30 Mar 2015
First published
17 Apr 2015

Analyst, 2015,140, 4068-4075

A human telomeric G-quadruplex-based electronic nanoswitch for the detection of anticancer drugs

Z. Bagheryan, J. Raoof, R. Ojani and P. Rezaei, Analyst, 2015, 140, 4068 DOI: 10.1039/C4AN02010C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements