Issue 6, 2015

Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

Abstract

Near-infrared scanning angle (SA) Raman spectroscopy was utilized to determine the interface location in bilayer films (a stack of two polymer layers) of polystyrene (PS) and polycarbonate (PC). Finite-difference-time-domain (FDTD) calculations of the sum square electric field (SSEF) for films with total bilayer thicknesses of 1200–3600 nm were used to construct models for simultaneously measuring the film thickness and the location of the buried interface between the PS and PC layers. Samples with total thicknesses of 1320, 1890, 2300, and 2750 nm and varying PS/PC interface locations were analyzed using SA Raman spectroscopy. Comparing SA Raman spectroscopy and optical profilometry measurements, the average percent difference in the total bilayer thickness was 2.0% for films less than ∼2300 nm thick. The average percent difference in the thickness of the PS layer, which reflects the interface location, was 2.5% when the PS layer was less than ∼1800 nm. SA Raman spectroscopy has been shown to be a viable, non-destructive method capable of determining the total bilayer thickness and buried interface location for bilayer samples consisting of thin polymer films with comparable indices of refraction.

Graphical abstract: Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2014
Accepted
28 Jan 2015
First published
11 Feb 2015
This article is Open Access
Creative Commons BY license

Analyst, 2015,140, 1955-1964

Application of scanning angle Raman spectroscopy for determining the location of buried polymer interfaces with tens of nanometer precision

C. A. Damin, V. H. T. Nguyen, A. S. Niyibizi and E. A. Smith, Analyst, 2015, 140, 1955 DOI: 10.1039/C4AN02240H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements