Issue 13, 2015

Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration

Abstract

Slab gel electrophoresis is still the gold standard method for the separation of biomolecules such as proteins and DNA with advantages such as simplicity, affordability, and high throughput, but it suffers from inadequate separation speed and resolution. Single capillary gel electrophoresis, on the other hand, offers faster separation time and improved resolution at the expense of higher cost and loss of high throughput capability. The high surface to volume ratio of the capillary causes improved heat dissipation leading to a reduced Joule heating and a higher resolution. Here, for the first time, we show the use of dispersed ceria nanoparticles (NPs) to improve the resolution and speed of protein separation in slab gel electrophoresis. We measured the rheological parameters of separation medium in order to find a meaningful relationship between viscosity changes, Joule heating, and band broadening. The results showed that ceria NPs decrease the viscosity of polyacrylamide gel. By loading 0.03% (w/v) ceria NPs into polyacrylamide gel at 25 °C, the viscosity decreased 22% and the thermal conductivity increased to 81%, which resulted in 35% reduction in Joule heating and 47% increase in resolution. This work is a cross disciplinary of theoretical physical chemistry for thermal conductivity and rheological measurements of PA and ceria suspensions and application in slab gel electrophoresis. We report here, for the first time, that embedded NPs in PA gel could potentially interface high throughput capability of slab gel electrophoresis with high separation speed of single capillary electrophoresis.

Graphical abstract: Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration

Article information

Article type
Paper
Submitted
08 Feb 2015
Accepted
22 Apr 2015
First published
22 Apr 2015

Analyst, 2015,140, 4434-4444

Embedded ceria nanoparticles in gel improve electrophoretic separation: a preliminary demonstration

M. Zarei, H. Ahmadzadeh and E. K. Goharshadi, Analyst, 2015, 140, 4434 DOI: 10.1039/C5AN00272A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements