Online electrochemical systems for continuous neurochemical measurements with low-potential mediator-based electrochemical biosensors as selective detectors
Abstract
This study demonstrates a new strategy to develop online electrochemical systems (OECSs) for continuously monitoring neurochemicals by efficiently integrating in vivo microdialysis with an oxidase-based electrochemical biosensor with low-potential electron mediators to shuttle the electron transfer of the oxidases. By using thionine and xanthine oxidase (XOD) as examples of low-potential mediators and oxidases, respectively, we demonstrate that the use of low-potential mediators to shuttle the electron transfer of oxidases would offer a new approach to the development of oxidase-based biosensors with theoretical and technical simplicity. To construct the XOD-based biosensor, thionine was adsorbed onto carbon nanotubes and used to shuttle the electron transfer of XOD. The XOD-based biosensor was positioned into an electrochemical cell that was directly coupled with in vivo microdialysis to form an online electrochemical system (OECS) for continuous and selective measurements of the substrate of XOD (with hypoxanthine as an example). The OECS based on the low-potential mediators is highly selective against the species endogenously existing in the brain system, which is attributed to the low operation potential benefited from the low redox potentials of the mediators. Moreover, the OECS demonstrated here is stable and reproducible and could thus be envisaged to find some interesting applications in physiological and pathological investigations. This study essentially offers a new strategy to develop online electrochemical systems, which is of great importance in understanding the molecular basis of physiological and pathological events.