Issue 21, 2015

Biomarker detection for disease diagnosis using cost-effective microfluidic platforms

Abstract

Early and timely detection of disease biomarkers can prevent the spread of infectious diseases, and drastically decrease the death rate of people suffering from different diseases such as cancer and infectious diseases. Because conventional diagnostic methods have limited application in low-resource settings due to the use of bulky and expensive instrumentation, simple and low-cost point-of-care diagnostic devices for timely and early biomarker diagnosis is the need of the hour, especially in rural areas and developing nations. The microfluidics technology possesses remarkable features for simple, low-cost, and rapid disease diagnosis. There have been significant advances in the development of microfluidic platforms for biomarker detection of diseases. This article reviews recent advances in biomarker detection using cost-effective microfluidic devices for disease diagnosis, with the emphasis on infectious disease and cancer diagnosis in low-resource settings. This review first introduces different microfluidic platforms (e.g. polymer and paper-based microfluidics) used for disease diagnosis, with a brief description of their common fabrication techniques. Then, it highlights various detection strategies for disease biomarker detection using microfluidic platforms, including colorimetric, fluorescence, chemiluminescence, electrochemiluminescence (ECL), and electrochemical detection. Finally, it discusses the current limitations of microfluidic devices for disease biomarker detection and future prospects.

Graphical abstract: Biomarker detection for disease diagnosis using cost-effective microfluidic platforms

Article information

Article type
Critical Review
Submitted
21 Apr 2015
Accepted
23 Jun 2015
First published
23 Jun 2015

Analyst, 2015,140, 7062-7081

Author version available

Biomarker detection for disease diagnosis using cost-effective microfluidic platforms

S. T. Sanjay, G. Fu, M. Dou, F. Xu, R. Liu, H. Qi and X. Li, Analyst, 2015, 140, 7062 DOI: 10.1039/C5AN00780A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements