Issue 3, 2015

IL-12 involvement in myogenic differentiation of C2C12 in vitro

Abstract

Recently, the extracellular microenvironment has been shown to be critical for the correct differentiation of stem cells to specific tissues. Many factors, including physical (e.g. biomaterial stiffness and topography) and biological (as growth factors, cytokines and chemokines) components, cooperate to create an ideal microenvironment for muscle stem cells, with many of these factors having been widely investigated. We previously demonstrated that the use of non-proliferating muscle-specific and unrelated cells as feeder layers for skeletal muscle progenitor cell differentiation resulted in significant differences in the ability to form myotubes, suggesting the importance of biological factors in myogenic differentiation. In this study, we investigated the biological factors involved in this process, analyzing the expression profile of 84 genes coding for cytokines and chemokines. We successfully identified a novel role for the cytokine IL-12 in the myogenic differentiation of C2C12 mouse skeletal muscle cells. Experiments involving the overexpression or silencing of the IL-12 gene in C2C12 showed that IL-12 enhanced the myogenic differentiation process. Moreover, when IL-12 was overexpressed in non-biologically related feeder cells, the new co-culture system was able to improve myogenic differentiation of C2C12 seeded on top. Although IL-12 is known to be a cytokine involved in inflammatory responses, it also appears to be involved in the myogenic differentiation process, acting as a positive regulator of this mechanism. This fact is expected to prove to be important for the development of functional biomaterials.

Graphical abstract: IL-12 involvement in myogenic differentiation of C2C12 in vitro

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2014
Accepted
23 Sep 2014
First published
16 Oct 2014

Biomater. Sci., 2015,3, 469-479

IL-12 involvement in myogenic differentiation of C2C12 in vitro

S. Romanazzo, G. Forte, K. Morishima and A. Taniguchi, Biomater. Sci., 2015, 3, 469 DOI: 10.1039/C4BM00315B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements