Issue 3, 2015

Artificial concurrent catalytic processes involving enzymes

Abstract

The concurrent operation of multiple catalysts can lead to enhanced reaction features including (i) simultaneous linear multi-step transformations in a single reaction flask (ii) the control of intermediate equilibria (iii) stereoconvergent transformations (iv) rapid processing of labile reaction products. Enzymes occupy a prominent position for the development of such processes, due to their high potential compatibility with other biocatalysts. Genes for different enzymes can be co-expressed to reconstruct natural or construct artificial pathways and applied in the form of engineered whole cell biocatalysts to carry out complex transformations or, alternatively, the enzymes can be combined in vitro after isolation. Moreover, enzyme variants provide a wider substrate scope for a given reaction and often display altered selectivities and specificities. Man-made transition metal catalysts and engineered or artificial metalloenzymes also widen the range of reactivities and catalysed reactions that are potentially employable. Cascades for simultaneous cofactor or co-substrate regeneration or co-product removal are now firmly established. Many applications of more ambitious concurrent cascade catalysis are only just beginning to appear in the literature. The current review presents some of the most recent examples, with an emphasis on the combination of transition metal with enzymatic catalysis and aims to encourage researchers to contribute to this emerging field.

Graphical abstract: Artificial concurrent catalytic processes involving enzymes

Article information

Article type
Feature Article
Submitted
15 Sep 2014
Accepted
17 Oct 2014
First published
28 Oct 2014

Chem. Commun., 2015,51, 450-464

Artificial concurrent catalytic processes involving enzymes

V. Köhler and N. J. Turner, Chem. Commun., 2015, 51, 450 DOI: 10.1039/C4CC07277D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements