Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries
Abstract
In the present review, we describe the development of a high energy density LIB fabricated with all 1D nanofibers as the anode and cathode, as well as a separator-cum-electrolyte prepared by an electrospinning technique without compromising the power capability and cycle life. Such a unique assembly certainly enables realizing the advantages of using 1D nanostructures in practical LIBs, irrespective of the anode or cathode in the presence of gelled polyvinylidene fluoride-co-hexafluoropropylene as the separator-cum-electrolyte. Outstanding cycling profiles with high power densities were noted for all the configurations evaluated. This excellent performance opens up new avenues for the development of high performance Li-ion power packs with a long cycle life and high energy and power densities to drive zero emission transportation applications in the near future, and opens up new research activities in this field as well.