Issue 42, 2015

A two-component hydrogelator from citrazinic acid and melamine: synthesis, intriguing role of reaction parameters and iodine adsorption study

Abstract

Herein, we have implemented an intimate grinding–mixing protocol (GMP) for the synthesis of a new hydrogelator from citrazinic acid and melamine. Sonication, just for a few seconds, of the ground mixture in a suitable solvent/mixed-solvent system finally results in the formation of a gel matrix. Citrazinic acid is decorated with ureidopyrimidone functionalities and melamine is enriched with aminopyridine functionalities. Therefore, the necessary non-covalent interactions (like hydrogen bonding and π–π stacking) become part-and-parcel of this reaction, bringing a nanofibrous gel material into existence. A thorough and complete solvent-dependent gelation investigation suggests that water must be present as the sole solvent or one of the members of other mixed-solvent systems to successfully result in gel formation. The gel shows an entangled network morphology. Different micro-analytical studies (FTIR, powder XRD, FESEM, TEM, rheology, etc.) have been conducted for complete characterization of the gel sample. The gel also exhibits stimuli-responsive behaviour towards different interfering chemical parameters like pH, selective anions, etc. Again, it is worth mentioning that here, GMP plays a key role in strongly initiating and improvising solid-state self-assembly. Different non-covalent interactions afford a suitable hydrogen-bonded motif which presumably propagates upon activation in solution phase after mild sonication, favouring the spontaneous formation of fibrous architectures. It is also noticed that without grinding, the solid-state interactions are jeopardized and only a partial gel structure prevails. Finally, the available porosity in the gel framework and the enriched π-electron density within the structure make the gel a suitable host for adsorption of guest molecules. This information provoked us to study the reversible adsorption–desorption equilibrium of molecular iodine within the dried-gel matrix. The guest iodine entrapment into the host occurs both from the solution and also from gas-phase iodine. The complete analysis suggests that our material presents a high storage capacity for this halogen species. Therefore, the study prescribes that the synthesized hydrogel material could be a suitable candidate for application in synthetic organic chemistry and would find an avenue to solve other environmental issues also.

Graphical abstract: A two-component hydrogelator from citrazinic acid and melamine: synthesis, intriguing role of reaction parameters and iodine adsorption study

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2015
Accepted
01 Aug 2015
First published
03 Aug 2015

CrystEngComm, 2015,17, 8119-8129

Author version available

A two-component hydrogelator from citrazinic acid and melamine: synthesis, intriguing role of reaction parameters and iodine adsorption study

S. Sarkar, S. Dutta, C. Ray, B. Dutta, J. Chowdhury and T. Pal, CrystEngComm, 2015, 17, 8119 DOI: 10.1039/C5CE01001B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements