Issue 1, 2015

Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs

Abstract

In recent times, significant achievements in the use of zinc oxide (ZnO) nanoparticles (NPs) as delivery vehicles of cancer drugs have been made. The present study is an attempt to explore the key photoinduced dynamics in ZnO NPs upon complexation with a model cancer drug protoporphyrin IX (PP). The nanohybrid has been characterized by FTIR, Raman scattering and UV-Vis absorption spectroscopy. Picosecond-resolved Förster resonance energy transfer (FRET) from the defect mediated emission of ZnO NPs to PP has been used to study the formation of the nanohybrid at the molecular level. Picosecond-resolved fluorescence studies of PP–ZnO nanohybrids reveal efficient electron migration from photoexcited PP to ZnO, eventually enhancing the ROS activity. The dichlorofluorescin (DCFH) oxidation and no oxidation of luminol in PP/PP–ZnO nanohybrids upon green light illumination unravel that the nature of ROS is essentially singlet oxygen rather than superoxide anions. Surface mediated photocatalysis of methylene blue (MB) in an aqueous solution of the nanohybrid has also been investigated. Direct evidence of the role of electron transfer as a key player in enhanced ROS generation from the nanohybrid is also clear from the photocurrent measurement studies. We have also used the nanohybrid in a model photodynamic therapy application in a light sensitized bacteriological culture experiment.

Graphical abstract: Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs

Article information

Article type
Paper
Submitted
21 Aug 2014
Accepted
28 Oct 2014
First published
28 Oct 2014

Phys. Chem. Chem. Phys., 2015,17, 166-177

Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs

S. Sardar, S. Chaudhuri, P. Kar, S. Sarkar, P. Lemmens and S. K. Pal, Phys. Chem. Chem. Phys., 2015, 17, 166 DOI: 10.1039/C4CP03749A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements