Alternative alcohol-soluble conjugated small molecule electrolytes for high-efficiency inverted polymer solar cells†
Abstract
New alcohol-soluble conjugated small molecule electrolytes (CSMEs), 3,6-bis-(5-benzoic acid-thiophen-2-yl)-2,5-bis-(2-ethylhexyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione liquid crystalline (DPP-COOH) and di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) dye (N719), are developed as interfacial modification in inverted polymer solar cells (PSCs). Further optimization of the device architecture by combining the electrolytes as hole and electron buffer layers can significantly promote the photovoltaic performances of PSCs due to the integrated advantages of excellent alcohol processability, hole and electron mobility, interfacial dipole effect and good energy level alignment with electrodes. Moreover, the PSCs with the CSMEs interlayers based on narrow band-gap PTB7:PC71BM active layers show considerable improvement in power conversion efficiency (PCE), compared with P3HT:PCBM active layer-based devices. Devices with DPP-COOH and N719 modifications after thermal treatment at 120 °C exhibit the PCE of 8.0% and 7.6% under AM 1.5G irradiation, respectively, improving from 6.7% PCE of the pristine device without any interfacial layer. Encouragingly, the simultaneous use of CSMEs as hole and electron modification layers can boost the PCE to 8.2%. These findings demonstrate that the utilization of alcohol-soluble small molecule conjugated electrolytes with lower band gaps as interfacial modification layers is an effective and practical strategy for improving photovoltaic performance in PSCs.