Explicit calculation of the excited electronic states of the photosystem II reaction centre†
Abstract
The excited states of sets of the cofactors found in the photosystem II reaction centre have been calculated directly as a multi-monomer supermolecule for the first time. Time-dependent density functional theory was used with the CAM-B3LYP functional. Multiple excited states for each cofactor were found at lower energies than the lowest energy state corresponding to charge transfer states (in which an electron is shifted from one cofactor to another). The electrostatic environment was found to have a dramatic impact on the excited state energies, with the effect of a surrounding dielectric medium being less significant.