Site- and state-selected photofragmentation of 2Br-pyrimidine
Abstract
The fragmentation of the 2Br-pyrimidine molecule following direct valence photoionization or inner shell excitation has been studied by electron–ion coincidence experiments. 2Br-pyrimidine has been chosen as a model for the class of pyrimidinic building blocks of three nucleic acids and several radiosensitizers. It is known that the site- and state-localization of energy deposition, typical of inner shell excitation, results in the enhancement of the total ion yield as well as in changes in the relative intensity of the different fragmentation channels. Here we address the question of the origin of this selective fragmentation by using electron–ion coincidence techniques. The results show that the fragmentation is strongly selective in the final singly charged ion state, independently of the process that leads to the population of that state, and the dominant fragmentation patterns correlate with the nearest appearance potential.