Issue 35, 2015

Distributed curvature and stability of fullerenes

Abstract

Energies of non-planar conjugated π systems are typically described qualitatively in terms of the balance of π stabilisation and the steric strain associated with geometric curvature. Curvature also has a purely graph-theoretical description: combinatorial curvature at a vertex of a polyhedral graph is defined as one minus half the vertex degree plus the sum of reciprocal sizes of the faces meeting at that vertex. Prisms and antiprisms have positive combinatorial vertex curvature at every vertex. Excluding these two infinite families, we call any other polyhedron with everywhere positive combinatorial curvature a PCC polyhedron. Cubic PCC polyhedra are initially common, but must eventually die out with increasing vertex count; the largest example constructed so far has 132 vertices. The fullerenes Cn have cubic polyhedral molecular graphs with n vertices, 12 pentagonal and (n/2 − 10) hexagonal faces. We show that there are exactly 39 PCC fullerenes, all in the range 20 ≤ n ≤ 60. In this range, there is only partial correlation between PCC status and stability as defined by minimum pentagon adjacency. The sum of vertex curvatures is 2 for any polyhedron; for fullerenes the sum of squared vertex curvatures is linearly related to the number of pentagon adjacencies and hence is a direct measure of relative stability of the lower (n ≤ 60) fullerenes. For n ≥ 62, non-PCC fullerenes with a minimum number of pentagon adjacencies minimise mean-square curvature. For n ≥ 70, minimum mean-square curvature implies isolation of pentagons, which is the strongest indicator of stability for a bare fullerene.

Graphical abstract: Distributed curvature and stability of fullerenes

Article information

Article type
Paper
Submitted
23 Jun 2015
Accepted
12 Aug 2015
First published
13 Aug 2015

Phys. Chem. Chem. Phys., 2015,17, 23257-23264

Distributed curvature and stability of fullerenes

P. W. Fowler, S. Nikolić, R. De Los Reyes and W. Myrvold, Phys. Chem. Chem. Phys., 2015, 17, 23257 DOI: 10.1039/C5CP03643G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements