Pressure-responsive mesoscopic structures in room temperature ionic liquids†
Abstract
Among the most spectacular peculiarities of room temperature ionic liquids, their mesoscopically segregated structural organization keeps on attracting attention, due to its major consequences for the bulk macroscopic properties. Herein we use molecular dynamics simulations to explore the nm-scale architecture in 1-octyl-3-methylimidazolium tetrafluoroborate, as a function of pressure. This study reveals an intriguing new feature: the mesoscopic segregation in ionic liquids is characterized by a high level of pressure-responsiveness, which progressively vanishes upon application of high enough pressure. These results are in agreement with recent X-ray scattering data and are interpreted in terms of the microscopic organization. This new feature might lead to new methods of developing designer solvents for enhanced solvation capabilities and selectivity.