Issue 37, 2015

Photoinduced charge accumulation by metal ion-coupled electron transfer

Abstract

An oligotriarylamine (OTA) unit, a Ru(bpy)32+ photosensitizer moiety (Ru), and an anthraquinone (AQ) entity were combined to a molecular dyad (Ru-OTA) and a molecular triad (AQ-Ru-OTA). Pulsed laser excitation at 532 nm led to the formation of charge-separated states of the type Ru-OTA+ and AQ-Ru-OTA+ with lifetimes of ≤10 ns and 2.4 μs, respectively, in de-aerated CH3CN at 25 °C. Upon addition of Sc(OTf)3, very long-lived photoproducts were observed. Under steady-state irradiation conditions using a flux of (6.74 ± 0.21) × 1015 photons per second at 450 nm, the formation of twofold oxidized oligotriarylamine (OTA2+) was detected in aerated CH3CN containing 0.02 M Sc3+, as demonstrated unambiguously by comparison with UV-Vis absorption spectra obtained in the course of chemical oxidation with Cu2+. Photodriven charge accumulation on the OTA unit of Ru-OTA and AQ-Ru-OTA is possible due to the lowering of the O2 reduction potential caused by the interaction of superoxide with the strong Lewis acid Sc3+. The presence of the anthraquinone unit in AQ-Ru-OTA accelerates the rate-determining reaction step for charge accumulation by a factor of 10 compared to the Ru-OTA dyad. This is attributed to the formation of Sc3+-stabilized anthraquinone radical anion intermediates in the triad. Possible mechanistic pathways leading to charge accumulation are discussed. Photodriven charge accumulation is of key importance for solar fuels because their production will have to rely on multi-electron chemistry rather than single-electron reaction steps. Our study is the first to demonstrate that metal ion-coupled electron transfer (MCET) can be exploited to accumulate charges on a given molecular unit using visible light as an energy input. The approach of using a combination of intra- and intermolecular electron transfer reactions which are enabled by MCET is conceptually novel, and the fundamental insights gained from our study are relevant in the greater context of solar energy conversion.

Graphical abstract: Photoinduced charge accumulation by metal ion-coupled electron transfer

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2015
Accepted
11 Aug 2015
First published
27 Aug 2015
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2015,17, 24001-24010

Photoinduced charge accumulation by metal ion-coupled electron transfer

A. G. Bonn and O. S. Wenger, Phys. Chem. Chem. Phys., 2015, 17, 24001 DOI: 10.1039/C5CP04718H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements