Multiphotochromic molecular systems
Abstract
Molecular systems encompassing more than one photochromic entity can be used to build highly functional materials, thanks to their potential multi-addressability and/or multi-response properties. Over the last decade, the synthesis and spectroscopic and kinetic characterisation as well as the modeling of a wide range of multiphotochromes have been achieved in a field that is emerging as a distinct branch of photochemistry. In this review, we provide an overview of the available multiphotochromic compounds which use a variety of photoactive building blocks, e.g., diarylethene, azobenzene, spiropyran, naphthopyran or fulgimide derivatives. Their efficiency in terms of multi-responsiveness is discussed and several strategies to circumvent the most common limitation (i.e., the loss of photochromism of one part) are described.