Issue 15, 2015

Peptide self-assembly triggered by metal ions

Abstract

Through their unique and specific interactions with various metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. Inspired by natural metallopeptides, chemists have developed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing nanostructures. However, the design of new coordination peptides requires a deep understanding of the structures, assembly properties, and dynamic behaviours of such peptides. This review briefly discusses strategies of peptide self-assembly induced by metal coordination to different natural and non-natural binding sites in the peptide. The structures and functions of the obtained aggregates are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications.

Graphical abstract: Peptide self-assembly triggered by metal ions

Article information

Article type
Review Article
Submitted
17 Mar 2015
First published
08 May 2015

Chem. Soc. Rev., 2015,44, 5200-5219

Peptide self-assembly triggered by metal ions

R. Zou, Q. Wang, J. Wu, J. Wu, C. Schmuck and H. Tian, Chem. Soc. Rev., 2015, 44, 5200 DOI: 10.1039/C5CS00234F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements